Credit Hours Programs		Final Exam
Program of Elec. Eng. and Control		Course: Mathematics 3
Duration: 2 hours	Code: EMP 201	
Date : January 11, 2020	Faculty of Eng. - Shoubra	Group 3174

The exam consists of one page No. of questions : $4 \quad$ Answer All questions Total Mark: 40

Question 1 (10 marks)

(a)Find the first derivatives of the function F and find $\nabla \mathrm{F}$ where

$$
F=e^{x}+\ln (2 x+y)-z^{3} \cos y
$$

(b)Find the envelope of the curves: $(x-2 a)^{2}+(y+a)^{2}=1$
(c)Determine the extrema of the function $f(x, y)=3 x+2 y$ s.t $3 x^{2}+y^{2}=7$

Question 2 (10 marks)

(a) Find $\bar{U}_{z}, \nabla . \bar{U}$ and $\nabla x \bar{U}$ where $\bar{U}=\left(x^{2} \sin z\right) i+\left(y^{3}+e^{x}\right) j+(z \cos y) k$.
(b)From the curve : $\mathrm{x}=\mathrm{e}^{2 \mathrm{t}}, \mathrm{y}=\mathrm{t}^{3}$, t in $[0,2]$.

Find the area A, the arc length L and the volume V_{y} and the surface area S_{x}.
(c)Findthe integral $\int_{(0,0)}^{(2,4)}\left(x^{2}\right) d x+(2 x+y)$ dy through the curve $x=\sqrt{y}$

Question 3 (14 marks)

(a)If $f(z)=z+\cos z$. Show that $\mathrm{u}(\mathrm{x}, \mathrm{y}), \mathrm{v}(\mathrm{x}, \mathrm{y})$ satisfy the Riemman's equations.
(b)If $u=\cosh x \cos y$. Find its conjugate v and write $f(z)=u+i v$.
(c)Determine and sketch the image of the region G:0 $0 \leq 2,0 \leq y \leq \pi$ under the function $f(z)=\cos i z$.
(d)If C is the circle $|\mathrm{z}+1|=4$. Find the integrals:
(i) $\oint_{C} \frac{z+\sin z}{z^{2}+36} d z$
(ii) $\oint_{C} \frac{\sin z}{(z+\pi)^{2}} d z$
(iii) $\oint_{C} \frac{2^{z}}{z(z-2)} d z$

Question 4 (6 marks)

(a)Write the Fourier series of $f(x)=|x|,-1 \leq x \leq 1, f(x+2)=f(x)$.
(b)Write the Fourier sine of the function $f(x)=x-1$, x in $[0,2], f(x+4)=f(x)$

Credit Hours Programs
Engineering and Management of
Construction Sites Program
Duration: 2 hours

Faculty of Eng. - Shoubra

Final Exam
Course: Mathematics 3
Code: EMP 201
Date: January 11, 2020

The exam consists of one page No. of questions: $4 \quad$ Answer All questions Total Mark: 40

Question 1 (10 marks)

(a)Find the first derivatives of the function F and find $\nabla \mathrm{F}$, where

$$
F=3^{x}+y^{3} \ln x-z^{3} \sin y
$$

(b)Find the envelope of the curves : $(x-b)^{2}+(y-2 b)^{2}=1$
(c)Determine the extrema of the function $f(x, y)=2 x+3 y$ s.t $x^{2}+3 y^{2}=7$

Question 2 (10 marks)

(a) Find $\bar{U}_{y}, \nabla . \overline{\mathrm{U}}$ and $\nabla \mathrm{x} \overline{\mathrm{U}}$ where $\overline{\mathrm{U}}=\left(\mathrm{x}^{2} \sin \mathrm{y}\right) \mathrm{i}+\left(\mathrm{y}^{3}-\mathrm{e}^{\mathrm{z}}\right) \mathrm{j}+(\mathrm{z} \cos \mathrm{x}) \mathrm{k}$.
(b)From the curve : $x=t^{3}, y=e^{t}, t$ in $[1,2]$.

Find the area A, the arc length L and the volume V_{y} and the surface area S_{x}.
(c)Findthe integral $\int_{(2,0)}^{(3,1)}\left(x+y^{2}\right) d x+(x+y) d y$ through the curve $x=y^{2}+2$

Question 3 (14 marks)

(a)If $f(z)=z+e^{z}$. Show that $u(x, y), v(x, y)$ satisfy the Riemman's equations.
(b)If $v=x^{3}-3 x y^{2}$. Find its conjugate u and write $f(z)=u+i v$.
(c)Determine and sketch the image of the region G: $0 \leq x \leq \pi, 0 \leq y \leq 2$ under the function $f(z)=\sin z$.
(d)If C is the circle $|\mathrm{z}-1|=3$. Find the integrals:
(i) $\oint_{C} \frac{z+\sin z}{z^{2}+15} d z$
(ii) $\oint_{C} \frac{\sin z}{(z-\pi)^{2}} d z$
(iii) $\oint_{C} \frac{2^{z}}{(z+1)(z-3)} d z$

Question 4 (6 marks)

(a)Write the Fourier series of $f(x)=x,-\pi \leq x \leq \pi, f(x+2 \pi)=f(x)$.
(b)Write the Fourier cosine of the function $f(x)=x+1, x$ in $[0,1], f(x+2)=f(x)$

